The generator matrix

 1  0  0  0  0  1  1  1  0  1  1  X  1  1  X  0  1  0  X  1  X  X  1  X  1  0  1  1  0  1  X  1  1  X  X  1  1  1  1  1  1  1  1  0  X  0  1  1  0  0  0  1  0  X  X
 0  1  0  0  0  0  0  0  0  1  1  1 X+1  0  1  1  X  1  X X+1  X  1  1  1 X+1  X  0  1  0  1  1  0  X  1  1  0 X+1  1  X  0 X+1  X  0  1  1  X  1  1  1  1  1  X  X  0  0
 0  0  1  0  0  0  1  1  1  X  1 X+1 X+1  0  X X+1 X+1  0  1  0  1  1  0  X  X  1  X X+1  X  1  1  X  1 X+1 X+1  0  1  X  X  0 X+1 X+1 X+1  X X+1  X  1  X  0 X+1  1  0  1  1  1
 0  0  0  1  0  1  1  0 X+1  X  0  X X+1 X+1  X X+1  X X+1 X+1  1  0  0  X X+1 X+1 X+1  X  1  1  0  1  0  1  1 X+1 X+1 X+1  1  1  X X+1  X X+1 X+1 X+1  1  X X+1  0  0  X  X  X  X X+1
 0  0  0  0  1  1  0 X+1 X+1  1  X X+1 X+1  X  1 X+1  0  X  0 X+1  1  0  0  1  X X+1  1  0 X+1 X+1  X  1 X+1  X  1  1 X+1  1  X X+1  1  X X+1  X X+1  X  X  0  X  X  1 X+1  1  1  X
 0  0  0  0  0  X  0  X  X  X  0  X  X  0  X  X  0  0  0  X  X  0  0  X  0  X  X  X  0  0  X  0  0  X  0  0  0  0  X  0  0  X  0  X  0  0  0  X  X  X  X  X  0  0  X
 0  0  0  0  0  0  X  0  X  0  X  X  0  X  X  X  X  0  0  X  0  X  0  0  0  0  X  X  0  0  0  0  X  X  0  0  X  X  X  X  0  0  0  0  X  X  0  X  0  X  X  0  0  0  0

generates a code of length 55 over Z2[X]/(X^2) who�s minimum homogenous weight is 46.

Homogenous weight enumerator: w(x)=1x^0+164x^46+380x^48+511x^50+551x^52+519x^54+521x^56+469x^58+383x^60+297x^62+190x^64+80x^66+22x^68+8x^70

The gray image is a linear code over GF(2) with n=110, k=12 and d=46.
This code was found by Heurico 1.16 in 1.85 seconds.